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Abstract. For two discrete-level quantum systems in interaction, we follow the displacement in the complex
plane of the eigen-energies of the compound system when the excited level of one of the two systems is
enlarged. These new points are usually called resonances and describe mixed unstable states. This allows
us to define and to calculate a critical value of the coupling constant which separates two well-known
coupling regimes. These two regimes are thus described in a unified way. In the study, resonances which
are usually not taken into account occur. They are studied in the large continuum case provided by the
coupling of the hydrogen atom to the states of the transverse electromagnetic field in the vacuum. We
justify that some of these resonances be neglected in this case.

PACS. 42.50.-p Quantum optics – 71.36.+c Polaritons – 73.21.-b Electron states and collective excitations
in multilayers, quantum wells, mesoscopic, and nanoscale systems

1 Introduction

In this work, we are interested in states in which a discrete-
level quantum system S is coupled to a continuum C. The
total system may be an atom coupled to the transverse
electromagnetic field, in the vacuum or in a non perfect
cavity, an electron in a quantum dot coupled to optical
phonons or photons, an exciton coupled to optical phonons
or photons in a microcavity. The continuum may also con-
sist of electronic states, whereas S is a fixed energy photon.

Three points usually appear in the study of this ques-
tion. The first one is the vacuum Rabi splitting, the fact
that for a two level atom, for instance, the coupling of the
atom to photons which are resonant with the transition
splits the excited level. This is a simple fact of Quantum
Mechanics (see for instance [1], p. 408). The second point
is the distinction between the weak and strong coupling
regimes of the interaction of S and C. The third one is the
existence of bound states or almost bound states of the
S+ C system which occur at large coupling constant. We
are going to show that these three points can be linked by
the study of the resonances of the S+ C Hamiltonian in
the complex plane.

Many experimental studies have been performed in re-
cent years as regards the second point, in the various do-
mains we mentioned in the first paragraph. It is not pos-
sible to quote them all. Some of them are specially related
to the transition between the two regimes. Let us mention
for instance [2], where mixed electron-phonon states in a
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quantum dot [3] are studied, or [4–7] and [8–11], about
excitons coupled to phonons or photons, or also [12] in
which the continuum is made of electronic states. Atoms
in cavities are studied for instance in [13–17]. The reso-
nances of the S+ C system are numerous, as we showed
it in [18,19]. One often only considers the following two
extreme situations. Either the imaginary parts of these
resonances are practically zero (very narrow continuum)
and the resonances are very close to eigenvalues, thus eas-
ily identifiable, or some imaginary parts are very large,
and the corresponding resonances are either not known,
or deliberately ignored. The interest which has been taken
recently in intermediate situations, such as those which
occur in solid state physics for some electron-phonon cou-
plings, leads to take all these resonances into account,
without limiting oneself to perturbative calculations.

In these intermediate situations, the coupling constant
and the continuum’s width have various values. The con-
tinuum’s width actually depends on the states of S. As
regards the interaction of an atom with the transverse
electromagnetic field, the coupling constant in the inter-
action Hamiltonian is indeed the fine structure constant,
but the details of the effective coupling, its dependence
with respect to the energy of the photon emitted in some
transition, depends on the transition which is considered.
For instance, in general, the spatial extension of the atom’s
states is a factor which affects the width of the continuum
as it is seen by the atom. The larger the spatial extension,
the narrower the continuum’s shape and the closer to the
reals the resonances. This influence of the spatial exten-
sion may be very important [20]. We shall use the coupling
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to the photon of the hydrogen atom Rydberg states to
measure this influence again and also to prepare possible
later studies of large molecules or studies in strong inter-
actions. Indeed, in the hydrogen atom case, we will show
that only resonances perturbed from the free atom’s ener-
gies are of interest, although states with principal quan-
tum number n extend over a distance proportional to n.
The reason is that wavelengths of transitions between two
states are too large with respect to the mean extension of
these states for the other resonances to play any role. It is
nevertheless a fact that these other resonances exist and,
to be concrete, we will calculate some of them.

In Section 2, we first introduce the question in a gen-
eral and qualitative way. Then, through a two level model,
we study the behaviour of the resonances under the vari-
ation of three parameters: the coupling constant, the con-
tinuum’s width and a continuum/system detuning. This
will lead us to a precise definition of a transition point be-
tween the strong and weak coupling regimes. We will meet
the vacuum Rabi splitting (VRS) in the narrow continuum
limit (a case of strong coupling regime). In Section 3, we
will apply the general preceding analysis to several sit-
uations among those mentioned in the beginning of this
introduction. Section 4 is devoted to the hydrogen atom.

2 General study of a discrete-level system
coupled to a continuum

It is now clear that for any discrete-level system S coupled
to a massless field, or more generally to a continuum, the
number of eigenvalues or resonances of the Hamiltonian
is much greater than the number of levels of S. The term
resonances here means poles of matrix elements of the
Hamiltonian’s resolvent. Even with photons having only
one possible state, if their number is not limited, the num-
ber of these eigenvalues or resonances is already infinite.
Now, the number of linearly independent possible states
for each photon may be infinite and the number of dis-
crete levels is itself infinite. This make three reasons why
the Hamiltonian operates in an infinite dimensional space.
In the case where S is coupled to a massless field, let us
denote the Hilbert space of S by HS and that of the field
by Hrad. In a N -dimensional space, a hermitian matrix
has N real eigenvalues (possibly degenerated). In [19], we
showed that the number of resonances is comparable to
the dimension of the states of the total system S+ field
rather than to the number of discrete S-states. Since these
two numbers are infinite, (more precisely card (IN)), we
have to make this statement more precise: for any restric-
tion of the Hamiltonian to finite-dimensional subspaces of
HS ⊗Hrad, the number (with degeneracies taken into ac-
count) of resonances of the restricted Hamiltonian is at
least the dimension of these subspaces. (This dimension is
not necessarily the product of the dimension of a subspace
of HS by the dimension of a subspace of Hrad.) This is a
somewhat important departure from the traditional small
coupling description, if the continuum’s width is neither
zero nor large.

2.1 Two types of resonances

When the continuum’s width is large, some of these res-
onances are the familiar ones which appear through the
perturbative approach to the coupling: they are the ener-
gies of the S-levels moved into the complex plane by the
coupling. We call them R-type resonances, according to
the general following definition.

Definition 1: in the coupling of a discrete-level
system S to a continuum C, R-type resonances (or
eigenvalues) are resonances (or eigenvalues) which
tend to the energies of eigenstates of S, when the
coupling constant λ tends to 0, the Hamiltonian
being of the form λV . We call resonances (or
eigenvalues) which do not have this property C-type
resonances (or eigenvalues).

R and C-types were respectively called ‘standard’ and
‘nonstandard’ in [18–21].

Let us note that S and C do not play a symmetrical role
in this labelling. Let us also note that S may be a material
system and the continuum the set of states of the radia-
tion. But it may be the other way round (see Sect. 3.2).
We refer to the next to last paragraph of Section 2.3 for
a justification of distinguishing two types of resonances.

Of course, the study of these resonances requires that
a Hamiltonian be given, but we will begin with general
considerations, without specifying the interaction. In the
whole Section 2, the continuum is that of the states of a
free scalar photon.

2.2 Coupling functions

Let us denote the eigenstates of S by |0〉, |1〉, ... and set

H =
∑

n

En|n〉〈n| ⊗ 1 + 1 ⊗ Hrad + HI (1)

the Hamiltonian of the S + field system. Hrad is the
Hamiltonian of the free field. Let us assume that for all
n > m and all ϕ ∈ F1, the one-photon-state space, there
are functions gnm such that

〈n|HI |m; ϕ〉 =
∫

ϕ(k)gnm(k)dk (2)

(we set |m; ϕ〉 = |m〉 ⊗ ϕ). Thus, formally, we have

gnm(k) = 〈n|HI |m; k〉 (2′)

and gnm(k) describes the coupling of state |m〉 to state |n〉
through absorption of a photon with wave-vector k. We
call ||gnm||−1

2 gnm the coupling function. (||gnm||2, the L2-
norm, has the dimension of an energy.) Generally, HI has
a lot of other a priori non-zero matrix elements than (2).
We consider the following approximation of H

Happ :=
∑

n

En|n〉〈n| ⊗ 1 + 1 ⊗ Hrad + Happ
I (3)

with

Happ
I :=

∑

m<n

(
|n〉〈m|⊗a(gnm)+|m〉〈n|⊗(

a(gnm)
)∗) (3′)
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where a(.) is the field’s annihilation operator : a(gnm) =∫
akgnm(k)dk. This Hamiltonian neglects matrix elements

of HI between states the number of photons of which
differs by more than one, as well as matrix elements
〈m|HI |n; k〉 with m < n.

2.3 An example of a couple of a R-type and a C-type
resonance: the vacuum Rabi splitting

C-type resonances are easily seen in the limit where each
gnm is replaced by a delta function at point knm. (They
become C-type eigenvalues.) Let us show this. The inter-
action Hamiltonian (3) becomes

Hdis
I :=

∑

m<n

λnm

(
|n〉〈m| ⊗ aknm + |m〉〈n| ⊗ a∗

knm

)
. (4)

Let us set

Hdis :=
∑

n

En|n〉〈n|⊗1+1⊗
∑

m<n

�cknma∗
knm

aknm
+Hdis

I .

(5)
Eigenvalues of Hdis−Hdis

I are En, En+�ckij , En+�ckij +
�cklm, etc. When the λnm’s are small, one can expect
the eigenvalues of Hdis to be close to the preceding ones.
Then, except for particular values of the kij ’s, only the
eigenvalues of Hdis which are close to the En’s are of the
R type, in the sense of definition 1. Others are of the C
type: when the coupling constant goes to 0, they tend to
a linear combination of an atomic level’s energy (possibly
with the coefficient 0) with energies of a non-zero number
of photons. In the particular two-level case, the excitation
number operator N :=

∑
n=0,1 |n〉〈n| ⊗ 1 + 1 ⊗ a∗

k01
ak01

commutes with Hdis. Let El be the eigenspace associated
with eigenvalue l of N . For l ≥ 1, its dimension is 2. For
example, for l = 1, E1 is spanned by |0, k01〉 and |1, Ω〉, Ω
denoting the vacuum in the radiation space. In this case,
the restriction of Hdis to E1 has two eigenvalues which
are close to E1 and E0 + �ck01 respectively. We called the
former R-type and the latter C-type resonances. If the
photon energy k01 equals E1 − E0 (resonance), then the
coupling Hdis

I removes the degeneracy of the eigenvalue of
Hdis − Hdis

I associated with eigenvectors in E1, and this
is called the vacuum Rabi splitting. For this special value
of the photon’s energy, the R-type and C-type eigenvalues
turn into the doublet of the VRS.

The number of eigenvalues of Hdis is infinite. Note that
even the number of R-type eigenvalues is greater than the
number of discrete states, since the displacements of E1

calculated in the El’s are a priori different. This is also
true for the resonances these eigenvalues change into in the
non-zero width case. We know (see [19], for instance) that
for two levels, with the coupling function g(p) ∼ p/(1 +
p2), there is a R-type resonance and a C-type one for the
restriction of Hamiltonian (3) to each El.

When the width of the gnm’s is not zero, we expect
the eigenvalues either to remain eigenvalues or to become
resonances. If the detuning is large, that is to say if the

photons’ energy is not resonant with any atomic transi-
tion, and if the coupling constant is small, then resonances
which were of the C type at zero width will remain so if the
width is sufficiently small. For example, for r �= l, eigenval-
ues close to Er + (l− r)kij will remain C-type resonances.

In this setting, one may not see any reason for distin-
guishing two types of resonances if C-type resonances were
simply perturbed values of eigenvalues which have a sim-
ple physical meaning. The reason for such a distinction is
twofold. First, the labelling is useful in cases where C-type
resonances of this kind are not obvious. It is the case for
a large width continuum. An example is the case of an
atom in the vacuum. The resonances of this C-type are
very different from the atomic energy levels and we need
a term to label them. The term is kept in other cases. We
will see that C-type resonances disappear without trace
when λ = 0. Second, some C-type resonances are also of
an other kind, as we will show it in Appendix A.

We are now going to study the two-level case more
thoroughly. We are going to vary different parameters of
the coupling of S to C and to follow the trajectories of
some resonances under these variations.

2.4 Study of a two level system

We consider a two-level system in the rotating wave ap-
proximation (RWA). So there is only one coupling function
g. Let E1 > 0 be the energy of the excited state |1〉 and
let us assume that the energy of the fundamental state |0〉
is 0. The Hamiltonian is

H = E1|1〉〈1| ⊗ 1 + 1 ⊗ Hrad + λ
(
|0〉〈1| ⊗ (

a(g)
)∗

+ |1〉〈0| ⊗ a(g)
)
. (6)

We assume that ||g||2 = 1, the strength of the coupling
appearing in λ, which has the dimension of an energy.

As the resonances can only be obtained by computer,
we are going to chose a particular g. This example will
yield the important notions. The chosen function is

g(k) :=

√
2
π

(µk0)−1/2

1 + µ−2( k
k0

− 1)2
. (7)

As µ gets smaller, the function becomes more peaked at
k0 > 0 (the width is 2µk0, see Fig. 2). We set δ :=
E1/(�ck0) − 1; δ ∈] − 1,∞[. Physically, this function for
example models the effect of a cavity, in the S-field inter-
action, µ being proportional to the inverse of the cavity’s
quality factor and k0 being a particular cavity’s mode.
When g is very peaked at k0, δ measures the detuning
between the levels’ spacing and the energy of the coupled
photons. We will only consider eigenvalues or resonances
of the restriction of H to E1 (defined in Sect. 2.3). They
are zeros of

z → z − E1 − λ2

∫ +∞

−∞

g(k)2

z − �c|k|dk (8)
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Fig. 1. Values ζ = (�ck0)
−1z, for two resonances z, µ varying from 0.01 to 1.

Fig. 2. The coupling function for µ = 0.01 (left) and for µ = 1 (right). Units are k0 on the abscissa and k
−1/2
0 on the ordinate.

or of its analytic continuation into the lower complex half-
plane, across the cut IR+. (For z = E1, the integral term
in (8) is simply the correction to the upper level’s energy
due to the emission and re-absorption of a virtual photon.)
With κ = (�ck0)−1λ and for ζ < 0, let us set

f(κ, µ, δ, ζ) := ζ − (1 + δ)

− 2κ2

πµ

∫ +∞

−∞

1
(
1 + (y−1

µ )2
)2

1
ζ − |y|dy. (8′)

The resonances we are interested in are the product of
�ck0 and zeros of the analytic continuation f+(κ, µ, δ, .) of
f(κ, µ, δ, .) into the lower complex half-plane.

We are now going to study the position of these zeros
as functions of three physical parameters of the system:
κ, µ and δ. An important point has to be mentioned: when
at least two variables are considered, the position of these
zeros is a multivalued function of these variables, even if
these variables remain real [21]. This leads to a complica-
tion as regards the zeros’ notation.

2.4.1 Displacement of two resonances through the variation
of the coupling function’s width

We start with a study with clearly non-zero detuning in
order to study the effect of the variation of the contin-
uum’s width independently of resonance effects (here this
word means zero detuning).

When µ tends to 0, it can be shown that f(κ, µ, δ, ζ)
and f+(κ, µ, δ, ζ) tends to ζ−1−δ−κ2/(ζ−1). For small κ,
one of the zeros of this function is close to 1+δ (resonance

close to E1) and the other one is close to 1 (resonance
close to E0 + �ck0). The zeros of f+(κ, µ, δ, ζ) generated
by the preceding zeros when µ increases, starting from
0, are denoted respectively by ζw,at(µ) and by ζw,ph(µ).
The index w indicates that only the width varies; δ and κ
remain constant. Subscripts “at” and “ph” indicate that
if µ → 0 and then κ → 0, the limits are the energy of
the atom’s excited state and the energy of the photon,
respectively. Let us mention that f+(κ, µ, δ, .) has another
zero for µ �= 0, whose physical meaning is no more obvious.
It is described in Appendix A.

For κ = 0.1 and δ = 0.25, the position of two reso-
nances when µ is varied is given by the curves of Figure 1.

Limits of ζw,ph(µ) and ζw,at(µ) for µ tending to 0 are
respectively 1 + 2−1(δ − (δ2 + 4κ2)1/2) = 0.965 and 1 +
2−1(δ + (δ2 + 4κ2)1/2) = 1.285.

The coupling functions for µ = 0.01 and µ = 1 are
plotted in Figure 2.

In Figure 1 we see that the imaginary part of ζw,at

does not exceed 0.03 in modulus whereas that of ζw,ph

increases and takes much larger values when µ increases.
For small µ, the resonances are close to the real axis.

However, let us note that ζw,at is here also much closer to
the reals than ζw,ph. Indeed, the calculation gives ζw,at =
1.285–2.7× 10−6i and ζw,ph = 0.963–9.8× 10−4i for µ =
0.01.

Before we turn to the µ → 0 limit, let us comment on
the type of ζw,at(µ) and ζw,ph(µ), with the same values
of κ and δ. Since, by a continuity argument, ζw,ph and
ζw,at remain respectively in neighbourhoods of 0.965 and
1.285 when µ is small, ζw,at(µ) is of the R-type for small
µ, whereas ζw,ph(µ) is of the C-type. Indeed, the energy of
|1〉 is 1.25, in �ck0 units, and it is actually the zero of f
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sitting at ζw,at(µ) for κ = 0.1 which tends to 1.25 when κ
tends to 0. In Section 2.4.3.2, we show what happens when
µ increases. Physically, when µ gets sufficiently large, the
detuning is no longer noticeable and, if the coupling is
strong enough, we may expect that the atomic and pho-
tonic states be mixed, and even hardly distinguishable. As
a consequence, if µ is large, it is difficult to guess which
of the two resonances goes to 1 and which goes to 1 + δ,
when κ goes to 0. In other words it is difficult to guess
which is the R-type one. In Section 2.4.3.2, we even show
that for some value of κ and µ, both resonances coincide.

In the µ → 0 limit, the Hamiltonian formally becomes

H1 = E1|1〉〈1|⊗1+1⊗Hrad +λ(|0〉〈1|⊗a∗
1 + |1〉〈0|⊗a1)

(9)
where a1 is the annihilator of a photon with energy �ck0.
Photons whose wave numbers differ from k0 are decoupled.
Let us consider the reduced Hilbert space H0, tensor prod-
uct of HS and the k0-photon’s Fock space. The restriction
of H1 to H0 has an infinite number of eigenvalues. They
are of the form z±,n = �ck0ζ±,n, with

ζ−,n = n + 2−1(δ −
√

δ2 + 4nκ2),

ζ+,n = n + 2−1(δ +
√

δ2 + 4nκ2). (10a)

The associated eigenvectors are

φ±,n =
(
1 + nκ2ζ−2

±,n(κ)
)−1

(
|1〉 ⊗ |k0〉⊗n

+
√

nκζ−1
±,n(κ)|0〉 ⊗ |k0〉⊗(n−1)

)
. (10b)

The coupling thus yields dressed states. When κ goes to 0,
φ+,n tends to |0〉 ⊗ |k0〉⊗n for δ > 0 and to 1⊗ |k0〉⊗(n−1)

for δ < 0. It is the other way round for φ−,n.
These dressed states do not exist anymore as eigen-

states of the Hamiltonian when the coupling function has
a certain width. The eigenvalues, i.e. the energies of these
states, turn into the resonances drawn in Figure 1. They
both acquire an imaginary part.

In the non-zero width case, let us now look at what
happens when the two levels’ spacing is varied around
�ck0.

2.4.2 Variation with respect to the detuning. The levels’
anti-crossing

(a) The discrete case

Let us first recall what happens in the case where the
width of g is zero. When δ varies, both energies (10a) of
the dressed states corresponding to n = 1 vary. When δ
tends to ±∞, they asymptotically tend to the energies of
states |0〉 ⊗ |k0〉 and 1 ⊗ |0〉. These limits (in �ck0 units)
are drawn in dashed lines in Figure 3, for κ = 0.1. They
cross when E1 = �ck0.

We see that the interaction yields what is called an
anti-crossing, for whatever value of the coupling constant.
The larger the coupling constant, the larger the repulsion

Fig. 3. The levels’ anti-crossing, for an infinitely narrow con-
tinuum.

of the two curves, since the energies at δ = 0 are separated
by 2κ. The same phenomenon repeats in the neighbour-
hood of n-photon resonances. We are now going to show
how this anti-crossing is modified when the width of g is
no longer zero. Let us note that (10a) shows that ζ+ is of
the R-type whereas ζ− is of the C-type.

(b) The narrow continuum case

To each point on one of the two curves of the discrete case,
there now corresponds, in the continuous case, a complex
number. For example, for µ = 0.01 and δ = 0.25, the
curves in Figure 1 give values 0.963–9.8×10−4 and 1.285–
2.7 × 10−6. When δ varies, with the same µ value, the
resonances move in the lower complex half-plane as is in-
dicated in Figure 4.

In this figure, we see that the imaginary parts of both
resonances are more or less the same for δ = 0, about
−9.5×10−5. The one whose real part is greater than 1 will
be denoted by ζ+, the other by ζ−. For both curves, it can
be shown that the imaginary part tends to −µ = −0.01
when the real part goes to 1 (we recall that 1 − iµ is a
pole of the integrand in (8′), coming from a pole of g).

We also see that ζ+ is asymptotic to the reals when
δ → +∞. (It can be seen that it behaves like 1 + δ.)
Conversely, ζ− comes closer to the reals when δ decreases
to −1, and tends to 1 − iµ when δ → +∞. One usually
considers the imaginary part of the resonance associated
with an excited atomic state as the energy half-width of
this state, a state that the coupling has made unstable. In
the same way here, we may say, as in the discrete case, that
the resonance ζ− tends to the photon’s energy in the limit
δ → +∞, it being understood that this energy is spread
over a width equal to 2µ. Note that such an interpretation
would no longer hold for a wide continuum.

This leads us to propose to represent the mixed states’
energies in the following way, which generalizes the dia-
gram in Figure 5.

For each value of δ, a resonance is represented by a ver-
tical line segment centered at the real part of the resonance
and whose length is twice the imaginary part, i.e. the set
δ + i[�ζ −�ζ,�ζ + �ζ].
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Fig. 4. Variation of two resonances in the complex plane, with respect to the detuning δ, for κ = 0.1 and µ = 0.01 (expressed
in �ck0 units).

Fig. 5. Representation of two resonances in the real plane, as
a function of the detuning, for κ = 0.1 and µ = 0.01.

We are not going to determine the type of the two
resonances. It may change when δ varies if µ is not close
to 0.

(c) Discretization of the continuous case

In some papers, things are presented in an other way.
The continuum is discretized into a set of photon wave-
vectors k1, ..., kn, with corresponding coupling constants
λ1, ..., λn. In the one-excitation space E1, we thus get
an Hamiltonian whose only non-vanishing matrix ele-
ments are those between states |1; 0〉 and |0; ki〉. As
an example, let us take three values for k, say k− :=
k0(1 − µ), k0, k+ := k0(1 + µ) and coupling constants
λ− := 1

2κ�ck0, λ0 := κ�ck0, λ+ := 1
2κ�ck0. Then, in

the {|1; 0〉, |0; k−〉, |0; k0〉, |0; k+〉} basis, the Hamiltonian’s
matrix is

M = �ck0

⎛

⎜⎝

1 + δ κ/2 κ κ/2
κ/2 1 − µ 0 0
κ 0 1 0

κ/2 0 0 1 + µ

⎞

⎟⎠ .

Let us set κ = 0.1 and µ = 0.01, as before. The variation
with δ of the four eigenvalues of M is given in Figure 6.

It can be shown that the four curves do not cross.
Therefore, it is �ck+, the greatest of the three eigenvalues

in the continuum for δ → −∞, which tends to the energy
of state |1〉 when δ → +∞. Conversely, it is �ck−, the
smallest of the three eigenvalues in the continuum for δ →
+∞, which tends to the energy of state |1〉 when δ → −∞.
The description we gave in the continuous case is a concise
rigorous way of conveying what may be approached by
such discretizations.

Looking back at Figure 5, a visualization of Figure 4,
we see that we get states which are not only mixed states,
but also, in a sense, enlarged states. Let us now look at
the dependence with respect to λ. It will enable us to
examine the notions of strong and weak coupling regimes
in the light of the preceding results.

2.4.3 Variation with the coupling constant

2.4.3.1 A change in the regime around a critical value

Let us qualitatively see what is expected. When κ de-
creases, µ being fixed, the two grey tinted regions of
Figure 5 approach each other. Since their widths at each
end do not depend on κ, the line segments at δ = 0 are
going to overlap. The situation is then that of Figure 7a.
The calculation shows (see below) that for a certain κc, the
two line segments at δ = 0 coincide (same energy at the
center and same length, i.e. the resonances coincide in the
complex plane). When κ decreases and crosses this value,
Figure 7a changes in a continuous way into Figure 7b.

The two regimes called “strong coupling regime” and
“weak coupling regime” in the literature clearly appear
in this picture, on each side of κc. In the weak coupling
regime, the labelling ζ± is no longer pertinent. However,
one of the two resonances can be associated with the atom
and the other one with the photon. This is translated in
the notations ζphot and ζatom. When the coupling increases
beyond the critical value, this labelling is no longer pos-
sible. The mixing of the states is important when the de-
tuning is close to zero. An atomic state is changed contin-
uously into a photonic state when the detuning increases
from −1 to 1. Moreover, Figure 7a shows that ζ+ becomes
more and more unstable as δ decreases to 0, in the same
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Fig. 6. Four eigenvalues of the Hamiltonian, when the continuum is replaced by three discrete values (in �ck0 units). κ = 0.1.

Fig. 7. Variation of the resonances’ energies with respect to the detuning, at the transition between the strong (a) and weak
(b) coupling regimes. A real representation.

way as ζatom did for κ < κc, in Figure 7b. These emission
enhancements are well-known physical facts.

The preceding description gives a picture of the dis-
placement of the two resonances in the complex plane.
For µ = 0.01, the critical value of κ is close to 3 × 10−3.

In Figure 8, we show the exact position of each reso-
nance, as a function of the detuning, in the two regimes.
The dotted parts of the curves are obtained through vary-
ing δ step by step; the points have not been joined by
a curve so as to underline the rapid variation near the
singular point.

For a given µ, the critical value κc(µ) can be obtained
analytically through looking for κ and δ values for which
f+(κ, µ, δ, .) has a double zero. It amounts to solving the
four equations

�f+(κ, µ, δ, ζ) = 0 �f+(κ, µ, δ, ζ) = 0

�∂ζf+(κ, µ, δ, ζ) = 0 �∂ζf+(κ, µ, δ, ζ) = 0

for the four unknown κ, δ,�ζ and �ζ, with

f+(κ, µ, δ, ζ) =

ζ − 1 − δ − κ2

[
2
π

∫ − 1
µ

−∞

dy

(1 + y2)2(ζ + 1 + µy)

+
2
π

∫ ∞

− 1
µ

dy

(1 + y2)2(ζ − 1 − µy)

+
4i

µ

(
1

(1 + µ−2(ζ + 1)2)2
+

1
(1 + µ−2(ζ − 1)2)2

)]
.

On a computer, one indeed finds κc = 0.003, ζ = 1 −
0.0038i and δ  0.

From Figure 8, it is clear that, for δ = 0, ζatom is of
the R type whereas ζphot is not. Indeed, the curve ζatom is
going to flatten on the reals as κ decreases, ζatom moving
to 1, whereas it can be shown that ζphot moves towards
1− iµ, being therefore of the C-type. In the weak coupling
regime, the curves representing the resonances’ real parts
cross as the detuning varies, whereas we have an anti-
crossing in the strong coupling regime. The distinction
between the two regimes requires a detailed analysis near
δ = 0. Such an analysis at resonance can be found in [22]
for the case of excitons in semiconductor microcavities.

One could also look at the regime’s transition through
varying µ, κ being fixed. The strong coupling regime would
then occur below a critical µ, depending on κ. Note that
the ratio κc/µ is about 0.3 for the µ value we considered.

We take this example as a model in defining the two
regimes for the coupling of a two level system S to a con-
tinuum.

Definition 2: we say that we are in a strong cou-
pling regime if, through the variation of the detun-
ing between S and the continuum, the two reso-
nances move as it is represented in Figure 7a or
Figure 5. We are in a weak coupling regime if the
two resonances move as it is represented in Fig-
ure 7b.

Note that this definition depends on the existence of a
parameter measuring the detuning and that it therefore
does not apply when this parameter is no longer obvious.
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Fig. 8. Variation of the resonances’ energies with respect to the detuning, at the transition between the strong and weak
coupling regimes. Representation in the complex plane of ζ = E/(�ck0).

Fig. 9. Variation of four eigenvalues, at κ = 0.002, for a dis-
cretization of the continuum. µ = 0.01.

In Section 4, we introduce the coupling function −√
3(1+

(k/k0)2)−2k/k0, the atom level-spacing being 1; in this
case there is no obvious detuning parameter.

When the continuum is coarsely discretized into three
levels as before, there is no critical κ, but the atomic states
gradually shows up when the coupling constant decreases.
For instance, Figure 9 describes what Figure 6 becomes
when κ = 0.002.

2.4.3.2 The λ → 0 behaviour of resonances sitting
at ζw,ph(µ) and ζw,at(µ)

It can be checked by computer, up to µ = 5, that ζw,ph(µ)
is of the C type and that ζw,at(µ) is of the R type.

2.4.3.3 Behaviour of resonances sitting at ζw,ph(µ)
and ζw,at(µ) when the coupling increases

Let us consider the resonance which sits at ζw,ph(0.01)
when κ = 0.1 and follow its trajectory as κ increases. We
find that its real part decreases and that its imaginary
part also decreases, down to a value around 0.11–2×10−6i
for κ  1.0062. Let us call R the curve segment thus
drawn. This reminds us of the behaviour that we men-
tioned in the introduction, a behaviour that we illustrated
elsewhere [21], with the function g(p) =

√
2/π p/(1 + p2):

in that case, the analogous resonance became real neg-
ative beyond a certain value of κ. The existence of this
eigenvalue has been known for a long time ([23], CIII .6 of
[24]). In the present case the resonance does not become
real; its imaginary part starts growing beyond the above-
mentioned value of κ. Nevertheless, for large κ, greater
than 1.2 for instance, one can see that there does exist a
negative eigenvalue of the Hamiltonian. It approaches 0
when κ decreases to 1.118 and connects to R, but only
if κ follows a path avoiding a neighbourhood of 1.1, in
the complex plane. This indicates a branch point of the
zeros of the multivalued function f , in this region of the
κ complex plane. A complication may be due to the fol-
lowing fact. There is a difficulty for a zero of f to cross 0:
for ζ ∼ 0−, the integral in (8′) diverges, because g does
not vanish at 0, contrary to the above-mentioned case. It
would be interesting to multiply the coupling function (7)
by p and see whether the negative eigenvalue reaches 0,
which is likely to be the case.

The resonance which sits at ζw,at(0.01) for κ = 0.1
tends to the positive real axis at infinity, after having
moved away from it for a while.

We are now going to go through several subjects con-
cerning mixed states (also called intricate, or hybrid states
in the literature) and the two coupling regimes, for inter-
actions of a discrete-level system with a continuum. These
subjects have been often studied in the last years and there
still is an intense experimental activity in these domains.
In each of these examples, the three parameters we used
before will come into play.

3 Illustration of the general study in several
concrete cases

3.1 Atoms (or equivalents) in cavities. The continuum
is a continuum of photon states

Let us consider an atom with two levels (states |0〉 and
|1〉), in resonance with the mode of a cavity with quality
factor Q. Let ω be the angular frequency of the photons.
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We refer to the introduction for some works on cavity elec-
trodynamics. One may also consult Haroche’s courses at
College de France (2001–2004), which are accessible, for
recent studies. The strength of the atom-mode coupling
is measured by the frequency 1

�
D10

√
�ω/(2ε0V ), D10 be-

ing the matrix element of the electric dipole operator be-
tween the two states and V the cavity’s volume. Since
the cavity is not perfect, the mode may be described as
an environment presenting a Lorentzian spectrum with
width Γc = ω/Q to the atom. When Q is large, we are
in the small µ case of the general presentation and thus
in a strong coupling regime. In the Γc = 0 limit, and
with at most one photon present, we are in the case of
Figure 3: the coupling yields intricate atom-photon eigen-
states (polariton states), which are linear combinations
of |0, 1 photon〉 and |1, 0 photon〉 states. If Γc is not con-
sidered as zero, these states become the two resonances
described in the general presentation. We are in the case
of Figure 5. The width at infinity on the abscissa axis is
2Γ . The complex values of the resonances, and in partic-
ular their imaginary parts, vary with the detuning. When
the detuning changes from a large negative value to a
large positive one, a “photonic state” changes continu-
ously into an “electronic state” or conversely, depending
on which resonance is considered. We get there intricate
states which have been much studied these last years.
Rydberg atoms are specially appropriate to the study of
this atom-cavity strong coupling [13]. Studies are presently
conducted on this subject. It might be useful to look at
the resonances’ position in the complex plane to get a
more precise description than the approximation given by
Figure 3.

In Section 4 we examine what becomes of the reso-
nances in a case where the cavity is no longer present.

We find an analogous situation for excitons in semicon-
ducting microcavities [10,11,25]. One can vary the photon
continuum’s width (through changing the cavity’s quality
factor) or the coupling strength (for example by means
of a magnetic field ([10] p. 43), so as to pass from the
strong to the weak coupling regime. In the former, the
experimental curves show two peaks, whereas in the lat-
ter, they often show only one peak. Since we did find two
resonances in both regimes, we must explain this. Three
reasons may be put forward. The first one is that one reso-
nance’s imaginary part may become large (widening of the
peak which disappears). The second is that one resonance
may stay out of the energy range which the apparatus
tests. A third possibility is that the probe be sensitive to
the cavity’s state and not to the exciton’s state (see [14]
Sect. 3.3, for the atom-and-cavity case).

The excitons may also acquire a certain width, through
exciton-exciton or exciton-phonon interactions, but we do
not consider interactions of two continuums in this paper.

3.2 Excitons in a microcavity. A case
where the continuum consists of excitonic states

Let us now assume that the photon in the cavity is prac-
tically monochromatic. We may have the exciton’s energy

spectrum seen by the photon varying by means of a mag-
netic field. The spectrum has a discrete part and a contin-
uous part and both changes with the magnetic field. When
the photon energy is in the discrete part of the exciton’s
spectrum, we get several possible resonances, with small
width, and the anti-crossings when two different exciton-
photon states have neighbouring energies. When the pho-
ton energy is in the continuous part of the exciton spec-
trum, the photon energy gets widened [12].

The first situation corresponds to the strong coupling
regime of Figure 3, for each anti-crossing. Both resonances
at stake at each anti-crossing have a small width. None of
them can be associated with the photon or with the ex-
citon if the detuning is not large. Corresponding mixed
states are called magnetopolaritons. In the second situa-
tion, experimental curves show that the coupling to the
continuum gives the photon state a certain width ([12]
Fig. 2). Through calculating the displacement in the com-
plex plane of the photonic resonance, as the detuning
passes from a negative value (not too big, the photon’s
energy has to stay in the continuum) to a positive one,
one should get the same picture as for ζatom in Figure 7b.

3.3 Electron-phonon mixed states

An other example where ideas developed in Section 2 ap-
ply, although with some modifications, is the coupling of
electrons confined in quantum dots to longitudinal optical
phonons of a bi-atomic lattice. The interaction is that of
the electron with the electric field created by the lattice
dipoles, a field which oscillates according to the various
possible modes. The Frölich Hamiltonian of the electron-
phonon system formally reads

Hel−ph =
∑

n≥0

En|n〉〈n| ⊗ 1 + 1 ⊗
∑

k∈B
�ω(k)a∗

kak

+ N−1/2C
∑

k∈B
k−1(a∗

ke−ik·r − akeik·r) (11)

where |n〉, n = 0, 1, · · · denotes the eigenstates of the elec-
tron in the dot, ω(k) is the energy of a phonon with wave
number k, B is the first Brillouin zone, C is a pure imagi-
nary constant and N a normalization factor ([26] p. 656).
If the lattice is infinite, the possible values of k make a
continuum and the Hamiltonian may be written

Hel−ph =
∑

n≥0

En|n〉〈n| ⊗ 1 + 1 ⊗ Hphon

+
∑

m,n

λmn

(|m〉〈n| ⊗ a∗(gmn) + |n〉〈m| ⊗ a(gmn)
)

(12)

where Hphon is the energy operator in the phonon space:
Hphon = �

∫
B ω(k)a∗

kakdk and

gmn(k) := i
(∫

B
|k|−2|〈m|eik·r|n〉|2dk

)−1/2

× |k|−1〈m|eik·r|n〉 (13)
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are the (normalized) coupling functions; the coupling con-
stants

λmn = (2π)−3/2iC
(∫

B
|k|−2|〈m|eik·r|n〉|2dk

)1/2

(14)

have the dimension of an energy. In calculating eigenval-
ues of Hel−ph, one often limits oneself to considering two
particular levels |0〉 and |1〉, for example the first two lev-
els of the dot, also neglecting the Hamiltonian’s matrix
elements which are of order greater than one. In [6], one
of the strong coupling regime exhibited involves states (s,
1 LO phonon) and (p, 0 LO phonon) for electrons in InAs
quantum dots. Let us consider this approximation and this
example. Function ω(k) is maximum for k = 0, where it is
equal to 36 meV. The range of ω(k) is 8 meV. Actually, if
we take account of the k−1 dependence of the interaction
and limit ourselves to k’s which give appreciable values of
the matrix elements, the range reduces to 0.4 meV. The
electron-phonon detuning is obtained through varying the
quantum levels in the dot by means of a magnetic field.
Let us denote the level spacing by E(δ) := �ω0(1 + δ), δ
measuring the detuning with respect to the photon energy
mean value �ω0. The Hamiltonian is

H = E(δ)|1〉〈1| ⊗ 1 + 1 ⊗ Hphon

+ λ
(|1〉〈0| ⊗ a∗(g) + |0〉〈1| ⊗ a(g)

)
(15)

where g = g01 and λ = λ01. If ω(k) had only one value
ω0, the eigenvalues would be roots of equation z −E(δ)−
λ2/(z − �ω0) = 0. Indeed, eigenvalues or resonances are
obtained by means of the function

f(λ, δ, z) := z − E(δ) − λ2

∫

B

|g(k)|2
z − �ω(k)

dk. (16)

They are its zeros or those of some analytic continuation
in the lower half-plane. When the phonon continuum is
infinitely narrow, the zeros are therefore real and there
variation with δ is of the type shown in Figure 3. When
the width is no longer 0, it is interesting to see whether
resonances are described by Figure 5 or Figure 7b, i.e.
whether the coupling regime is strong or weak. Interpreted
in the subspace spanned by states (s, 1 LO phonon) and
(p, 0 LO phonon), data given in [6] for the energies of
stationary states, or almost stationary states (see the re-
mark just below and in the next to last paragraph of this
section), show that we are not in the case of Figure 7b,
but in a strong coupling regime. As a consequence, when δ
passes from a large negative value to a large positive one,
a phonon state changes continuously into an electronic
state. Let us note that the smallness of the continuum’s
effective width, and also the limit in the measurements’
precision imply that points which should be represented
in a figure of Figure 5-type are actually represented as in
Figure 3.

There is a difference between this problem and that
of the coupling of a discrete system to the photon. In
the present case there are two functions which contribute
to the resonances’ imaginary part: g and ω. In the limit

δ → ∞, the vertical extension of the lower surface of
Figure 5, which expresses the imaginary part of one of the
resonances, depends on both widths. Only explicit calcu-
lations would tell us how the widths of these two functions
(and even the functions themselves) contribute to the final
result.

Unfortunately, a numerical calculation is more com-
plicated than in the case where ω(k) = |k|. It has
not been done. Indeed, performing an analytic continua-
tion requires knowing the values k1(z),k2(z), ... for which
ω(k) = z. Even in the case where ω(k) has an explicit
form, the ki(z) are not simple functions. For example, for
a one-dimension lattice with equal mass atoms, the ki(z)
are of the form arcos(cz), a function which is multival-
ued. Nevertheless, let us show qualitatively how ω(.) may
create a resonance distinct from the one which is close
to E(δ) when the coupling constant is small. In one di-
mension, and in the case of equal mass atoms, we have
ω(k) = ωmax cos(ak/4), with a the lattice spacing. There-
fore, values taken by ω lie in I =]

√
2

2 ωmax, ωmax]. When z,
coming from the upper half-plane, crosses this interval at a
point different from �ωmax, the integrand’s denominator in
(16) has two poles in the integration interval, ]−π/a, π/a],
which are ±arccos((�ωmax)−1z); the integration interval
can be deformed so as to avoid these two poles whereas
this is not the case if z comes to �ωmax, the integral be-
coming divergent. z = �ωmax is thus a singularity. Let us
assume it be the only one and, moreover, a simple pole. By
analogy with the expression z−E(δ)−Cte λ2/(z−�ωmax),
we may expect a zero of f(λ, δ, .) near �ωmax, for λ small.
The zero of f(λ, δ, .) will in fact be complex because the
continuation of that function is complex. Let us recall
other singularities of the continuations of f(λ, δ, .), already
met in the photonic case. They are due to poles of g. For
example, if kp is a pole of g in the lower half-plane, ω(kp)
may be a singular value of some analytic continuation of
f(λ, δ, .).

Nevertheless, from general ideas deduced from the
analysis of Section 2, one can make two points. Firstly
it is because the continuum is narrow that the strong cou-
pling regime occurs, the coupling then resembling that
of discrete states, with real energies. Secondly, there is
an important difference with this latter case: the width
of the phonon states’ continuum, as small as it may be,
makes the dressed electron-phonon states unstable, since
the energies of these states now have a nonzero imaginary
part. In the same way, the photons, although they are
stable, give an imaginary part to the electron energies of
the naked atom, through the extension of their spectrum.
This remark may be useful in discussing the stability of
polarons.

An analogous situation occurs in the case of the
exciton-phonon coupling in semi-conductor quantum dots
(excitonic polarons) [4,5].

In most of the preceding cases, data are obtained only
for narrow continuums. As a consequence, C-type reso-
nances, for example ζphot at δ = 0 in Figure 8, do not
appear as something special or are expected to be negligi-
ble (see the comment at the end of Appendix A). We now
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want to show these resonances in less trivial situations,
in which the C-type resonances are not a priori close to
the reals. To do so, we will be concerned with a wide con-
tinuum. We shall take the example of the hydrogen atom
coupled to the electromagnetic field in the vacuum.

4 R-type and C-type resonances involving
large-n states of the hydrogen atom

We are going to take more specifically into account the
fact that the environment seen by a system S depends on
the state in which the system is. The hydrogen atom is a
first example of a system about which one can answer the
following general questions. When one considers atomic
or molecular transitions between states whose spatial ex-
tension increases, does one see any decrease in the imag-
inary part of some of the associated resonances? In what
conditions would the order of magnitude of the imaginary
parts of the R-type and C-type resonances be comparable?
To ask these questions is justified by the example of the
charged harmonic oscillator studied in [20]. Let us recall
the result. If physical parameters of the oscillator have
such values that the spatial extension of the wave func-
tions is large enough compared to the wavelength of the
fundamental transition, then the C-type resonance may
become a (real) negative eigenvalue, therefore correspond-
ing to a stable state. We want to set a calculus for extended
states of the hydrogen atom, with a parameter measuring
the ratio between the space extension and the transition’s
wavelength and calculate an example of a C-type reso-
nance. This study will also give us an opportunity to give
a new example of a coupling function, in a case where no
exterior constraint is applied on the atom-field system. In
the cavity case, this constraint existed; it could suppress
or enhance an atomic transition.

4.1 Setting of the calculus and introduction
of non-dimensional variables

Let us consider a transition between two states |1〉 =
|n1, l1, m1〉 and |2〉 = |n2, l2, m2〉 of the electron in the
atom, accompanied by the emission of a photon. The
space of possible photon states is assumed to be the
space generated by states |γ〉 = |k, j, m, λ〉, with vari-
able energy E = �ck, the angular momenta j, m and
the polarization λ being fixed. The normalization is
〈E, j, m, λ|E′, j′, m′, λ′〉 = Eδ(E−E′)δj,j′δm,m′δλ,λ′ . Tak-
ing HI = ie�/(mc)A.∇ as the interaction Hamiltonian
and assuming j + j1 + j2 to be for example even, we have
(see for example [27])

gI(k) := 〈1|HI |2, γ〉 = C
(
Aφ1(k) + Bφ2(k)

)
(17)

where

φ1(k) =
∫

jj(kr)R∗
1(r)

( d

dr
R2(r)

)
rdr,

φ2(k) =
∫

jj(kr)
( d

dr
R∗

1(r)
)
R2(r)rdr. (18)

Constants A and B depend on the two considered states
|1〉 and |2〉 and R1, R2 are the radial parts of their wave
function. Let us neglect matrix elements of H which are
not in the subspace generated by |1〉 and |2, γ〉. Let H ′
be the corresponding operator, acting in this subspace.
The distance, which we call z, between eigenvalues or res-
onances of H ′ and the fundamental energy is one of the
zeros of the following function

f(z) = z − En1,n2 − 2||gI ||2
∫ ∞

0

|g(k)|2
z − �ck

dk

k
(19)

or of its analytic continuation into the lower half-plane.
g(k) is ||gI(k)||−1gI(k), with ||θ|| = (2

∫ ∞
0

|θ(k)|2dk/k)1/2

and En1,n2 is the difference between the energies of states
|1〉 and |2〉. The k−1 factor comes from the normalization
of |E, j, m, λ〉. In preceding works, we studied the zeros of
multivalued functions of the same form but with other g’s.

Before we give indications on the form that g takes
here in some particular transitions, let us show that the
equivalent of parameter µ of Section 2.4 is now the ratio of
the atomic transition wave-length to a length measuring
the space extension of states |1〉 and |2〉. We have

R1(r) = Pn1,l1(r/a0) exp(−r/(n1a0)),
R2(r) = Pn2,l2(r/a0) exp(−r/(n2a0))

where Pni,li are polynomials and a0 is the Bohr radius. Let
us introduce ρn1,n2

=
(
(n1a0)−1 + (n2a0)−1

)−1, half the
harmonic mean of the extensions n1a0 and n2a0 of |1〉 and
|2〉. Let us set y = 2πρn1,n2

/λphot and G(y) = g(y/ρn1,n2
).

We have ||G|| = 1, where ||G|| :=
( ∫

y−1G(y)2dy
)1/2.

Through also introducing the non dimensional variable
ζ = z/En1,n2 , f(z) changes into En1,n2F (ζ), with

F (ζ) : = ζ − 1 − 2κ2

∫ ∞

0

|G(y)|2
ζ − µy

dy

y

= ζ − 1 − 2κ2

∫ ∞

0

|G(µ)(y)|2
ζ − y

dy

y
(20)

where

κ = E−1
n1,n2

||gI || and µ = λn1,n2/(2πρn1,n2
) (20′)

G(µ)(y) = G(µ−1y) being obtained from G
through the unitary dilation operator in
L2(IR, dy/y). Remember that gI and therefore κ de-
pend on n1, n2, although it is not explicit in the notation.
The study of the two type of resonances has been changed
into the study of the zeros of the multivalued function F .
Through comparing (20) with (8) we see that parameter µ
here plays the same role as in Section 2.4: it dilates the
coupling function. However, it is not exactly the same
dilation.

4.2 Comparison between theR-type and the C-type
resonances. Dependence with respect to the spatial
extension of the naked states

If EI is the atom’s ionization energy, we have

µ = (n1−n2)−1n1n2E
−1
I �c/a0 > E−1

I �c/a0  2/α  274.
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We are going to show that the two zeros giving the R-
type and C-type resonances are respectively close to 1 and
−iµ, if κ is small, which we will check in some examples in
Section 4.3. We then get a qualitative answer to the two
questions we asked at the beginning of Section 4. Firstly,
provided κ does not change too much, one of the resonance
does move towards the reals when the ratio of the mean
extension of the states to the wavelength of the transition
between them increases. Secondly, and this is eventually
the important point in the present case, µ is large and,
therefore, the C-type resonances sit much farther from the
real axis than the R-type one and can be ignored. That
there is a zero near 1 is clear. Let us show that there are
zeros near −iµ.

Function G depends on the states |1〉 and |2〉
but its poles do not depend on them. Let us show
this if j = 1. Introducing x := ρ−1r, we get
Φi(y) := φi(y/ρ) =

∫ ∞
0 j1(yx)Pi(x)e−xdx, where Pi is

a polynomial whose degree is at least 2 and at most
n1 + n2 − 1. Setting Ap(y) :=

∫ ∞
0

j1(yx)xpe−xdx =
(−1)p+1

(
xp+1 dp

dxp (xArctg(1/x))
)

x=1/y
, we get, for p ≥ 2,

Ap(y) = (−1)p+1 yQp−2(y)
(1 + y2)p

(21)

where Qp−2 is a polynomial with degree at most p − 2.
As a consequence, G(y) has the form y

∑
p≥2 ap(1 +

y2)−pQp−2(y). Therefore, it has two poles and only one
in the lower half-plane, at y = −i. Its order depends on
the atomic transition which is considered. This implies
that the analytic continuation of F into the lower half-
plane has a pole at ζ = −µi, since the integration contour
in (20) is pinched between ζ/µ and −i, poles of the inte-
grand. Its order is the same as that of G. It is this pole of F
which is important for the C-type resonances. (This was
already the case in Section 2.4, since the position of the
pole of f in (8′) was related to the width of g through the
position of the pole of g.) Indeed, for small κ, the analytic
continuation F+ of F into the lower half-plane has sev-
eral zeros ζC,1, ζC,2, · · · near this pole −µi. (Think of the
function ζ − 1 − κ2(ζ − a)−n which has n zeros near a.)

Let us note here that g derived from G is not of the
form (7). But the existence of C-type resonances is a gen-
eral fact which does not depend on the particular form
of g. In the present case, as the continuum is not narrow,
there is no pertinent k0.

Of course the exact position of the zeros of F associ-
ated with the C-type resonances do depend on the exact
form of G and not only on its pole. In particular the posi-
tion also depends on the order of the pole: clearly, as the
order increases, the zeros gets farther from the pole. In
the numerical example we give in Section 4.3 below, the
order of the pole is two. It is larger for other transitions.
But on some examples we saw that increasing the order
does not seem sufficient to move the C-type resonances
substantially closer to the real axis.

In conclusion, large-n states of the hydrogen atom
do not give any other interesting resonances than the
R-type ones. Let us compare this result to the one we

obtained for the extended system mentioned at the be-
ginning of Section 4. We considered a quantum charged
harmonic oscillator with charge 1, mass m and spring
constant kr. The level spacing is �

√
kr/m and the ex-

ponential decrease of the wave functions is exp(−r2/δ2),
with δ = �

1/2(krm)−1/4. The larger δ, the larger the
extension. In a model in which this oscillator is cou-
pled to the transverse electromagnetic field, we saw [20]
that a C-type resonance moves towards the reals when
2πδ/λ = c−1

�
1/2(kr/m3)1/4, the equivalent of 1/µ, in-

creases. In particular, this resonance becomes even real
negative if the ratio 2πδ/λ becomes larger than 3

√
2π/α.

In the hydrogen atom case, the ratio 2πρ/λ = µ−1 re-
mains smaller than 1/274, and this implies that C-type
resonances always remain far from the reals. As regards
the second question asked in the beginning of the section,
it has to be noted that the distance of the R-type reso-
nance to the real axis is proportional to κ2. Therefore, in
the present study, since κ is small (see below), µ would
have had to be much smaller than 1 in order that R-type
and C-type resonances had comparable imaginary parts.

4.3 A numerical example

We might have calculated the C-type resonances, in the
two-level approximation, for transitions n1 → n2 = 1, for
which µ is close to its lower bound 274. However, in order
to give an idea of the position of such resonances, it is
sufficient to perform the calculation in the simpler case of
the transition |1〉 = |2, 1, 0〉 → |2〉 = |1, 0, 0〉, for which
µ is only twice the lower bound. The calculus is given in
Appendix B. Here is the result.

The zeros of F are respectively ζ2,R  1 − 2 × 10−6 −
2 × 10−8i on the one hand and ζ2,C,1 = 1.493 − 544i,
ζ2,C,2 = −1.474 − 551i, ζ2,C,3 = 3.576 − 549i, ζ2,C,4 =
−3.595−546i on the other hand. The first zero gives the R-
type resonance: z2,R = E2,1ζ2,R. Its imaginary part gives
a life time τ2 = 2× 0.16× 10−8 s, which has to be divided
by 2 to take the other polarization into account. We thus
recover the life time of the 2p state. The other zeros are
C-type resonances, very far from the real axis. The reason
why there are four is that the coupling function has a
double pole and is squared in the integrant in (20).

We have also calculated κ for the transitions between
|1〉 = |n, n − 1, 0〉 and |2〉 = |n − 1, n − 2, 0〉, with a pho-
ton in a state (j, 0, +1). The result, given in Appendix B,
shows that κ remains of the order of 0.02, when n varies
between 10 and 50. Thus the non-dimensional coupling
constant does not increase although E−1

n1,n2
 n3E−1

I gets
large in (20′).

In order to get the exact position of the resonances,
one should of course take other transitions into account
(see [19]). But we do not see any reason why this should
substantially displace C-type resonances towards the real
axis.

Regarding extended systems, we could think of hy-
drogenic excitons, whose mean radii may be as large as
2000 Å. But the associated Rydberg constant and Bohr
radius are respectively Ry∗ = ε−2

r (mred/m0) Ry and
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a∗
B = εr(m0/mred)aB , mred being the reduced mass of

the electron-hole system, m0 the electron’s mass in the
vacuum and εr the medium’s relative permittivity ([8],
formula (20a)); therefore, the ratio µ remains large.

5 Conclusion

The analysis in the complex energy plane of the resonances
of a system S coupled to a continuum gives a precise math-
ematical description of mixed states which form in the in-
teraction. Some of these mixed states may be assimilated
to eigenstates of the Hamiltonian if the continuum is very
narrow but, in general, they have a nonzero imaginary
part, which may be large. When their imaginary part is
so small that it can be considered to be zero, the corre-
sponding eigenstates mix states of S with states of the
continuum. It is these dressed states which are important
in certain situations, for example in some spectroscopic
measurements. When the imaginary part is not negligi-
ble, one has to deal with resonances, which we will still
consider as associated to mixed (unstable) states. The de-
scription we get is more complete than the perturbative
one based on the unperturbed states of S.

These mixed states may be followed with respect to
various parameters describing S or the coupling. When
the parameter is the detuning, the description allows us to
give a precise definition of the strong and weak coupling
regimes. Data yield numerous examples of these mixed
states when the continuum is narrow. Some are of the
R-type, others of the C-type. Mixed states in the sense of
the above paragraph also exist for the hydrogen atom cou-
pled to the transverse electromagnetic field; but we saw
that only the usual ones, corresponding to the unstable
atomic levels, have a small imaginary part. They corre-
spond to the resonances we called of R-type. A condition
for C-type resonances to play a role for a system like the
preceding atom is at least that its dimension be greater
than the wavelengths of transitions between the system’s
eigenstates. This might be the case for non-localized elec-
trons in large molecules. Let us also mention the case of
strong interactions, in which transitions between states
of the quark-antiquark system can have wave lengths of
the same order as the extension of the states. Moreover,
the coupling constant is not small. A calculation has been
performed in [18].

Appendix A: A third resonance, if the pole
of the coupling function is simple

We now study a zero of f+ that we only mentioned at the
beginning of Section 2.4.1, because we wanted to focus
mainly on the weak/strong-coupling transition. We thus
left aside resonances which had less importance, for the
considered parameter values.

Let us recall that several resonances may be related to
one another when several parameters are varied and that
we must therefore be cautious in enumerating them. This
is due to the fact that f+(κ, µ, δ, ζ) is multivalued with
respect to all variables.

Fig. 10. A third resonance. Variation with respect to µ, for
κ = 0.1 and δ = 0.25.

Fig. 11. A third resonance. Variation with respect to δ, for
κ = 0.1 and µ = 0.01.

When κ and δ are fixed, for example as in Figure 1, and
µ is the only parameter to vary, not all zeros of f+(κ, µ, δ, .)
are described by the curves in Figure 1. There exists an-
other zero which we now describe. We denote it by ζu(µ), a
function defined from its values for large µ. More precisely,
for µ = 2, f+(κ, µ, δ, .) has a zero at ζu = 1.005 − 2.095i,
which differs from ζw,ph(2) which is 0.993 − 1.895i. Fol-
lowing the displacement of this new resonance when µ
decreases, we obtain ζu(µ), represented by the curve in
Figure 10. When µ tends to 0, ζu tends to 1, the energy
of the decoupled photon; one can check that this remains
true for other values of κ. When µ increases, ζu seems to
be asymptotic to 1−iIR+, behaving like 1−iµ. Let us give
the type of ζu(2): it can be seen that the resonance sitting
at ζu(2) tends to 1 − 2i when κ goes to 0. Like ζw,ph(2),
ζu(2) is therefore a C-type resonance.

When δ is the parameter which is varied, κ and µ now
being fixed, a third curve has also to be added to the two
curves in Figure 4. The curve generated from the point of
Figure 10 at µ = 0.01 (ζ = 1.0019 − 0.019i) is shown in
Figure 11.

The limits when δ goes to ±∞ can be checked to be
again equal to 1−iµ. Collecting the results of Figures 4 (or
5) and 11, we see that there are two resonances tending
to 1− iµ, and one behaving as 1 + δ, when δ → +∞. The
same for δ → −∞.

That there are actually three resonances for each value
of the parameters can be seen as follows. If κ is small,
there is obviously a zero of f+ near 1 + δ, the energy
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(in �ck0 units) of the unperturbed excited state of S. For
mathematical reasons, there is also a resonance near 1−iµ
(the enlarged energy of the photon), but the point is that
the zero of f+ is double, which yields two resonances and
not one. Indeed, deforming the integration contour in (8′),
we can show that for �ζ < 0,

f+(κ, µ, δ, ζ) = f(κ, µ, δ, ζ)

− 4iκ2µ3

(
1

(µ2 + (ζ + 1)2)2
− 1

(µ2 + (ζ − 1)2)2

)
.

For �ζ < −ε et �ζ > 0, we then have, for fixed µ and δ,

f+(κ, µ, δ, ζ) = ζ − 1 − δ − c2κ
2

(ζ − (1 − iµ))2

− c1κ
2

ζ − (1 − iµ)
+ o(κ2).

Therefore, for κ small, one sees that, besides the zero near
1 + δ, f+ has indeed two zeros near ζ = 1 − iµ, the limit
of which is 1 − iµ when κ goes to 0.

The three resonances for small κ are related to the
three curves of Figures 1 and 10 in the following way. Let
us fix µ = 0.01 and δ = 0.25, to be concrete, and start
following the three resonances as κ increases from very
small values up to 0.1. The three resonances end up at
three points each one sitting on one of the three curves in
Figures 1 and 10.

Physically, each resonance contributes to the time-
dependence of 〈1|e−itH/�|1〉 through a contour integral in
the energy complex-plane, (see Sect. AIII .4 of Ref. [24]).
We note that the contribution of the resonance of Fig-
ure 11 is negligible, in particular for δ = 0. Indeed, for
every δ, its imaginary part is greater than −0.019, which
makes its contribution to 〈1|e−itH/�|1〉 of the order of
Ce−0.02(ck0)t, a quantity rapidly much smaller than the
contribution of the two other resonances whose imagi-
nary parts are of the order of 10−4. (The latter imagi-
nary parts yield a slight damping of the Rabi oscillation
between states |1, 0〉 and |0, 1〉.) In problems in which nei-
ther the coupling constant nor the continuum’s width are
small, the three resonances are to be considered. Let us
mention again that the number of C-type resonances is
greater than three if the pole of the coupling function is
not simple. This is illustrated in the hydrogen-atom case.

Appendix B: Calculation of C-type resonances
for the hydrogen atom

The radial parts of the wave functions of states |n, n−1, 0〉
and |n − 1, n− 2, 0〉 are

R1(r) = Kna
−3/2
0 e−r/(na0)(r/a0)n−1,

R2(r) = Kn−1a
−3/2
0 e−r/((n−1)a0(r/a0)n−2

where Kn = (2/n)n+1/2((2n)!)−1/2 normalizes the wave
function. Let the subscript n index all quantities re-
lated to the transition |n, n − 1, 0〉 → |n − 1, n − 2, 0〉,
with emission of a photon (j = 1, 0, +1). The function
gI,n(k) := 〈1|HI |2, γ〉 corresponding to this transition is
(see for example [27])

gI,n(y/ρ) = −i

√
3

2
√

π
α1/2(e2/ρn)(ρn/a0)2nDnϕn(y)

where

Dn =
KnKn−1

n
√

(2n − 1)(2n − 3)
,

ϕn(y) : = y
αnQ2n−4(y) + βn(1 + y2)Q2n−5(y)

(1 + y2)2n−2

with

αn = 2n2 − 3n + 2, βn = (2n − 1)2(n − 2)

Q having been defined by (21). G, µ and κ in (20) are
then, for the considered transition,

Gn(y) = ||ϕn||−1ϕn(y), µn = n(n − 1)E−1
I �c/a0

and

κn =
(3α)1/2

2
√

π
(e2/ρn)(ρn/a0)2nDnE−1

n,n−1||ϕn||

=
(3α)1/2

2
√

π

e2/a0

EI

(n(n − 1))2n+1

(2n − 1)2n
Dn||ϕn||.

Through using e2/a0  2EI , we get κn √
3/πα1/2(n(n−1))2n+1(2n−1)−2nDn||ϕn||. A computer

gives

κ2 = 0.018, κ10 = 0.022, κ50 = 0.028

and, for n = 2,

µ2  548 and G2(y) = −
√

3
y

(1 + y2)2
.

The five zeros of F are then respectively ζ2,R  1 − 2 ×
10−6−2×10−8i and ζ2,C,1 = 1.493−544i, ζ2,C,2 = −1.474−
551i, ζ2,C,3 = 3.576 − 549i, ζ2,C,4 = −3.595− 546i.
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